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The properties of mechanical systems controlled by the application of generally non-linear servoconstraints, holonomic or non- 
holonomic, are investigated. The concept of ideal servoconstraints is analysed. The specific features involved in applying the 
local variational principles of mechanics and the equations of motion derived from them for systems with ideal and non-ideal 
servoconstraints are pointed out. The problem of a point moving at a constant velocity in a gravity field is solved, on the assumption 
that the constraint keeping the velocity constant is implemented both by ideal and by non-ideal servocontrols. © 2001 Elsevier 
Science Ltd. All rights reserved. 

The concept of a servoconstraint was apparently first introduced in 1922 by Henri Beghin [1] for 
systems controlled by servodrives. We will assume that servoconstraints, like traditional mechanical 
constraints, are given as relations among the coordinates and velocities of the system, and 
constitute a mathematical formulation of the requirements imposed as the objective of the control. It 
is assumed that the system is controlled by servomechanisms, whose purpose is to realize the servo- 
constraints. Unlike traditional, passive constraints, which are presumed to hold precisely at any given 
time, servoconstraints may be relations of arbitrary structure among the coordinates and velocities 
of the system and are not necessarily satisfied precisely. All that is required is that the servodrive 
control should produce a stable transient in which the servoconstraint is an attractor for the phase 
trajectories of the system. This effect may be achieved by appropriate synthesis of the control of the 
servoconstraint mismatch. 

After the aforementioned synthesis problem has been solved, the equations of the servoconstraints 
become the same as the traditional equations of constraints in mechanics, except that they may be 
expressed by arbitrary functions of the coordinates and the velocities. Another difference is that the 
efforts necessary to realize servoconstraints must guarantee the specially constructed servodrive controls. 
With this in mind, the problem of investigating the motion of systems with servoconstraints has all the 
features characteristic for problems of analytical mechanics. The relevant arsenal of methods needs 
only a few refinements. 

Differential constraints which are non-linear in the velocities have been studied before [2]. As 
yet, the question of whether this kind of constraint [3] can be realized using a passive mechanical 
device cannot be answered in the affirmative. In this paper we propose to introduce tools of active 
control that will realize constraints which are arbitrary functions of the states of the system. As is 
traditional, we will treat a mechanical system as a set of point masses, understanding the reactions of 
the servoconstraints to be additional forces applied to these point masses so as to realize the servo- 
constraints. 

The local principles of analytical mechanics are based on the concept of ideal constraints, which in 
turn use the definition of virtual displacement [4]. It has been proposed [3] that the concept of virtual 
displacement should be extended to the case of non-linear differential constraints given in Lagrangian 
coordinates, based on the requirement that the D'Alembert-Lagrange principle and Gauss's principle 
must be consistent. The structure of the set of reactions of non-linear differential constraints has been 
analysed [5],~t and the concept of virtual displacement has been extended to the case of non-linear 
constraints which depend on the radius vectors and velocities of the individual points of the system. 
The consistency of the generalized concept of virtual displacement with the local variational principles 
of mechanics has been confirmed. In this paper these aspects of the theory are developed for systems 
with servoconstraints. 

tPrikl. Mat. Mekh. Vol. 65, No. 2, pp. 211-224, 2001. 
$See also GOLUBEV, Yu. E, Local variational principles of mechanics for systems with differential non-linear constraints. 
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1. T R A N S I E N T  

The restrictions on the motion of a controlled mechanical system may be specified by means of constraints, 
that is to say, relations - equalities or inequalities - either among the coordinates, or among the coordinates 
and velocities, of the points in the system. Clearly, these restrictions may not be fulfilled at some given 
time (such as the starting time), and it is required to construct servodrive controls so as to make the system 
satisfy the required restrictions and ensure that they will hold throughout the subsequent motion. Let us 
assume that the mechanical system consists of N point masses in space E 3, whose motion is constrained 
by both geometrical and differential bilateral constraints. Any geometrical constraint 

f ( r t  . . . . .  r N, t) = 0 

where rl . . . . .  rN are the radius vectors of the points and t is the time, may be given the form of a 
differential constraint 

dS +Tt =° 

where we have put rv = Vv. Suppose this operation has been carried out for all geometrical constraints, 
so that the entire set of traditional mechanical and servoconstralnts is taken into account by the following 
system of independent equations 

• j(rf . . . . .  rN, vl . . . . .  v N, t) = 0 , j  = 1 . . . . .  m 

The action exerted by both the servodrives and the mechanical constraints on the vth point mass of 
the system will be represented by the reaction 1% of the constraint. 

The problem of restoring disrupted constraints may be formulated as the problem of constructing a 
method of control which, because of the equations of motion, realizes the functionst 

( l) j  = ~ j ( t ) ,  f j  = j~j(t),  j =  I . . . . .  rn 

possessing the following properties. 
1. If at some time to we have ~j(_to) = 0, and in the case of a geometrical constraint also ])(to) = 0, 

then for t > to necessarily ~j(t) - O, fj(t) - 0 which is analogous to the operation of ordinary mechanical 
constraints. 

2. If servoconstraints are disrupted, the mismatch with these constraints is either asymptotically 
eliminated at a fairly rapid rate, or eliminated over a finite but fairly short time interval of the transient 
(piecewise-terminal control). 

In particular, in accordance with the operating principle of servomechanisms, it may be required that 
the time derivatives of the constraints along trajectories of the equations of motion obey the following 
equations 

dOj { -k j~ j  - to~fj, if ~j  = dfj I dt 
dt = Yj  = ,-kJtl'J" if ~ f j ,  j = I . . . . .  m 

where kj < 0, co 2 are constant force coefficients defining the velocity and quality of the transient and]) 
is the left-hand side of the equation of a geometrical constraint in the case when cl,j = d])/dt. This method 
of constructing the transient is the most frequently used in applications [6]. 

Another type of transient arises if one requires it to take place in minimum time. We will first indicate 
the synthesis of an optimal control for the case of a geometrical servoconstraint 

IV ~ f . v v  ~f  Yt = f(rl ..... rN,t), Y2 = ~ + - -  
v=t ~rv o~t 

In the (Yl, Y2) plane, the domain of negative values of Y is situated above the switching curve [7] 

Yl =-IY2 lY2/2, -"~<Y2 <+oo 

tGOLUBEV, Yu. E, Dynamics of systems with servoconstraints. Preprint No. 19. Inst. Prikl. Mat. im. M. V. Keldysha, Moscow, 
2000. 
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and the domain of positive values is below the switching curve. There is an easy "prescription" for optimal 
control. Suppose the point representing the actual state of the system has coordinates (Yl, Y2). The 
equation of the switching curve may be used to find the corresponding value of Y1. The control at the 
point (Yl, Y2) has the form 

t 
+l 

~" = ~.  -sign Yz, 

L-l, 

Yl < YJ (Y2) 

Yt = Yt (Y2) 

Yl > Yi (Y2) 

where T is the maximum admissible value of the function Y. This formula defines an optimal control 
for the entire phase space. 

Given a differential servoconstraint, we have 

y = q~(r  I . . . . .  rN ,Vl  . . . . .  V N , t )  

and the solution of the time-optimal problem is given by the relation 

~ -sign y, y ; ~ 0  

~ " = ? ' t  O, y = 0  

Indeed, a control whose output has the maximum absolute value, but with the opposite sign to that of 
y, guarantees the maximum possible rate of decrease in the function y(t).  

Other methods of constructing the transient are possible. For example, taking some parametric family 
of functions Ti(t) (i = 1 . . . . .  m) ,  one can designate independent parameters of the family so that the 
boundary conditions of the transient are satisfied when its duration is fixed [8]. 

2. R E A L I Z A T I O N  OF THE C O N S T R A I N T S  

Taking into account what was stated in the last section, we will henceforth express the equations of the 
servoconstraint by the formulae 

f ( r  I ..... r N, t) = j~(t) 

for geometrical constraints and 

* j ( r  I ..... rN,V t ..... V N , t ) = ~ j ( t ) ,  j =  I .....  m 

for differential constraints, assuming that the functionsf(t), ~ (t) are defined by some mode of control 
(Section 1). 

A necessary and sufficient condition for the deviation of the system from the constraints to obey the 
above rules at each instant of time by virtue of the equations of motion of the individual point masses 
is that reactions exist which satisfy the following system of linear equations 

N a(:i)j R v 
~. =bj ,  j = l  ..... m, m<~3N (2.1) 

v=l ~V v FF/v 

where 

N a~j F~ bj Y. ~. a ( l ) j  a d ) j  
. . . .  v v - + ' i f ' j ,  j = l  . . . . .  m 

v=l avv my v=l arv -~t  

and Fv are the active forces, which differ from those produced by the servodrives. The free terms 
bj (j = 1 . . . . .  m) are independent of the unknown reactions of the constraints. Ifm ~< 3N, the solution 
of this system is not unique. 

We choose an orthonormal frame of reference in the space E 3, say Oete2e 3. In order to specify the 
positions of all the point masses in the system (i.e. to define its configuration), it is sufficient to designate 
the 3N scalar coordinates of the system in the configuration space. 
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Following an approach proposed in [5] (see also the references cited in the footnotes), in order to 
determine the structure of the set of solutions of system (2.1), we define the following vectors in the 
configuration space 

X = (X I . . . . .  X3N ), 6 = (51 . . . . .  ~ 3 N ) ,  a j  = (ajl . . . . .  aj,3N) (2.2) 

where the components are 

Rv 'ek I a( l : ) .  
= ~ . ~  = ~ -  - j  . e k  Xl "~v  " 8i = n ~ v S r v ' e t '  aji ~/mv aVv 

i = k + 3 ( v - I ) ,  k = 1 , 2 , 3 ,  v = l  . . . . .  N, j = l  . . . . .  m 

and the Euclidean scalar product is defined by 

3N 

( a j , x )  = E ajixi 
i=1 

The system of equations (2.1) for the unknown vector x may be written as follows 

(aj, x )=bj ,  j =  1 . . . . .  m 

Since the initial system of constraints is independent, the rank of the matrix of this system is m. 
The solution x may be sought in the form 

x = ~_. ~,tat + x~ 
k=l 

where the vector x~ is orthogonal to all the vectors aj. The constants ~k are uniquely defined, since the 
matrix of the system of equations for ~.k is the Gram matrix of the sequence of linearly independent 
vectors al, . . . ,  am. The vector x~ in the equations of the system of constraints cannot be defined, and 
if it is chosen arbitrarily, the equations of the constraints are not violated during the motion of the 
material system. 

Definition 1. The normal space of a system of differential constraints is defined to be a set ~ of 
sequences {Rv, v = 1 . . . .  , N} of reaction vectors such that the 3N-dimensional vector x corresponding 
to each sequence belongs to the linear span lin(al . . . . .  am). 

Definition 2. The space ~ of virtual displacements is the set {fry, v = 1 . . . . .  N} of sequences of 
displacement vectors satisfying the system of equations 

N a(1)j 
~ . S r v  = 0, j = l  ... . .  m 

v= l  ~VV 

The dimension of the space ~ is 3 N - m .  A sequence {6rv, v = 1, . . . ,  N} of vectors satisfying this system 
of homogeneous linear equations is a virtual displacement of the system of point masses. 

The vector ~ of the virtual displacement {Srv, v = 1 . . . . .  N} in (2.2) is orthogonal to all the vectors 
a 1, . . . ,  am:  

N a o j  
T. a - ~ v  ~Srv = (a j ,8) = 0, j = I ..... m 
V=I 

The condition that an actual displacement {dry, vvdt, v = 1, . . . ,  N} of the system of point masses 
should belong tO the space of virtual displacements ff is 

T. a-Ev " v = ° '  j = l  ..... m 
v= l  

The following theorem has been proved (see the footnote on page 205). 



Mechanical systems with servoconstraints 209 

Theorem 1. A sequence of reactions {Rv, v = 1 . . . . .  N} will belong to the normal space ~ of a system 
of differential constraints if and only if, for any {6rv, v = 1 . . . . .  N} ~ 3-, 

/V 

Y. R v • ~ir v = 0, ViZir v, v = I ..... N} e 3- (2.3) 
V=I 

Definition 3. Constraints (mechanical and servo) imposed on a system of N point masses are said to 
be ideal if they satisfy condition (2.3). 

In other words, for ideal constraints, and only for them, the reactions belong to the normal space ~ .  
In order to find the reactions of ideal constraints, one can use the method of Lagrange multipliers 

Rv kj 
j=l Ovv 

Each term in the sum on the right of this expression may obviously be interpreted as the reaction of 
the j th  constraint acting on the vth point mass. 

Definition 4. A servodrive control that produces reactions of ideal servoconstraints will be called an 
Meal servocontrol. 

The concept of an ideal servocontrol means only that the reactions will assuredly belong to the normal 
space; it is not implied that no energy is consumed by the servodrives. 

The requirement that the servoconstraints be ideal may prove to be inconsistent with the design of 
the servodrives used in a specific problem. However, this does not always mean that such drives can 
never realize the desired constraints. The simple condition xx = 0 will sometimes prove to be too strong. 

The complete set of solutions of the problem is obtained if one adds the non-zero components of 
the reactions for which the corresponding vector xx is orthogonal to all the vectors al . . . . .  am. Denote 
this set of additional reactions by {R~, v = 1 . . . .  , N}. In order to augment the set of solutions in the 
required manner, one can take a suitable vector ~ _1_ lin(al . . . . .  am) and define x~ = 138 o r  

R~v = 13mvSrv, v = I ..... N 

where {~-/v, v = 1 . . . . .  N} E 3- is an appropriate virtual displacement of the system and 13 is a dimensional 
scalar coefficient, generally depending on the state parameters of the system and the time. 

3. T H E  E Q U A T I O N S  OF M O T I O N  

It has been shown (see the footnote on page 206) that if the constraints satisfy the condition for a 
generalized ideal constraint (Definition 3) and the condition for an ideal servocontrol (Definition 4), 
then the principle of virtual displacements, the D'Alembert-Lagrange principle, and Gauss's principle 
remain valid. For non-ideal servoconstraints, the D'Alembert-Lagrange principle may obviously be 
written in the form 

N 

Y~ (mvW v - F  v - ~mvSrv)Sr v =0, V{Srv,V = i ..... N} ~ 3- 
V=l 

where Wv are the actual accelerations of the points of the system. 
The concept of quasi-coordinates for servoconstraints is practically the same as the similar concept 

introduced previously (see footnote 1) for non-linear differential constraints. Allowance is made for 
the fact that the mechanical system may be subject to the action of both ordinary mechanical constraints 
and servoconstraints. As established in Section 2, the only difference between the equations of these 
types of constraint is whether the corresponding right-hand sides f(t) (for geometrical constraints) 
or @(t) (for differential constraints) vanish or not. 

Suppose the configuration of a system of N 3 point masses in R, considered with all (mechanical and 
servo) geometrical constraints, is uniquely defined by the coordinates 

ql . . . . .  qn, n ~< 3N 

so that the radius vectors of all the points in the System are expressed by the functions 



210 Yu. F. Golubev 

rv  = rv(q l  . . . . .  qn ,  t ) ,  v = 1 . . . . .  N 

Let us assume that the system is subject to differential constraints 

tilj(r I ..... r~,v I ..... vN,t ) = ill(t), j = I ..... m ~< n. 

Noting that 

v v = ~ Orv . ~r v ~ q q i  + 
i=l Ot 

let us substitute these expressions into the constraint equations. Then the constraints become 

4~j(q~ ..... qn,4~ ..... qn, t) = O, j = I ..... m 

Let us assume that the rank of the Jacobian 

0(~1 . . . . .  ~ . )  
~(, i ,  . . . . .  4,, ) 

is m. This means that the system of constraints defines in the velocity space t~l, . . . ,  qn a surface of 
dimension n - m, which may be represented in parametric form 

[1i = i l i (q l  . . . . .  q n , ~ l  . . . . .  ~ n - m ) ,  i = I . . . . .  n 

in such a way that, when the scalar parameters gl . . . . .  gn - m ,  - -  called quasi-velocities - are specified 
arbitrarily, the equations of the differential constraints are automatically satisfied. 

If desired, the functions gk(t) may be regarded as the derivatives of the quasi-coordinates nk(t). 
The question of when quasi-coordinates may be considered as completely legitimate coordinates of 

a system of point masses has been answered (see the footnote on page 205). 
Let us take the standard definition of the partial derivative of the coordinate qi with respect to the 

quasi-coordinate ~k 

()qi _ Oili 

Orq Oi~ k 

Similarly, for an arbitrary function f(ql . . . . .  qn, t), we obtain 

Of = ~. Of Oq.__,L= ¢ Of OCli 
~nk i=l igqi Onk i=tL" 3qi ~9"kk 

Using quasi-coordinates in the case of servoconstraints, we can define the space of virtual displace- 
ments as before: 

Ov v - ~)rv - ,i-m ,l-,,, 
5r v = ~  _f f~_ iOqi=~ _ _  8q i =  ~ ~ q i s l x k =  ~ ~qi ~1t, 

i=1 i=1 Oqi Oqi '  /=1 C)l~k k : l  0i ik 

Suppose that, corresponding to the coordinates ql, . . - ,  qn, we have generalized forces Q1, . . . ,  Qn. 
The scalar quantity 

* -- ~ ~ q i  
Q k -  ai 

i=1 ~gk  

is a generalized force corresponding to the quasi-coordinate nk. 
The concept of ideal servoconstraints enables one to separate the problem of investigating the dynamical 

properties of a system from that of determining the forces produced by the servodrives, and to derive 
equations of motion in which the reactions of the ideal servoconstraints do not occur. For non-linear ideal 
differential servoconstraints, one can apply the generalized Voronets equations (see the footnote on page 
205). Here we will further generalize the Voronets equations to the case of non-ideal servoconstraints. 
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We reduce the differential constraints to the form 

qt,+v = q~p+v(t, ql ..... q.,ql ..... qp), P = n -  m, v = 1 ..... m 

and form the functions 

T* = T*(ql ..... q.,ql ..... qp,t) q~p+v(ql ..... q. ,q l  . . . . .  qp,t)  

The function T* is obtained from the kinetic energy T of  the system by replacing the velocities 
q-+v(v = 1 . . . . .  m) by their expressions in terms of the differential constraints, while the functions 
tpp+v are identical m form with the corresponding functions q~p÷v. However, the derivatives of 
the functions T* and q~p+v are evaluated using the rule for differentiation with respect to a 
quasi-coordinate 

Oqt,+v Oqt,+v O~pp+v 
0qk 0tlk 0tlk 

• v = i  . . . . .  m, k = l  . . . . .  p 

The partial derivatives of the functions Tand tpp+v will be evaluated, as before, as if all their arguments 
were independent. Then, proceeding as before (see footnote 1), taking into account the components 
of the reactions not satisfying the condition for ideal constraints, we obtain the following theorem. 

Theorem 2. The coordinates qi define the motion of  a mechanical system obeying the differential 
servoconstraints if and only if they satisfy the following system of equations 

dtl, OiIi ) "-~-~qi =Q: +Q: +O.i, / = 1  . . . . .  p = n - m  

where 

OtPp+v Oqp+v 
v = I 04i  v=l Oqi 

v=l Oqi ' Qj =l~v=l m v S r v "  Oqj ' j =  I . . . . .  n 

o, :,_. _ r _ , _ .  ,,,,+, 
,,:, o,i,,,+,,Ldrt, o,i,; ) Oqi 

and it is assumed that the necessary sequence of reactions {Rv, v = 1 . . . . .  N} is realized at each instant 
of time. 

Remark 1. The equations system of Theorem 2 holds for any constraints imposed on the system. But it is not 
complete. To complete it, it suffices to add the equations of the differential constraints (kinematic equations) and 
to choose a virtual displacement of the system {~-rv, v = 1 . . . . .  N }  in  a suitable manner. 

Remark 2. The terms Oi are due to the action of the differential constraints. In the general case, they may involve 
the second derivatives of the generalized coordinates, so they cannot always be treated as generalized forces. At 
the same time, in the case of linear differential constraints, the operator in square brackets in the formulae for Qi 
does not involve the second derivatives of the coordinates, and Qi may then be interpreted as certain generalized 
forces that arise owing to the action of non-holonomic constraints [9] .  

Let  us find the sum 

= - -  -"='7-..-- q i - 2 ,  = 

= ~ -  E oqi ) i=1 i=1 
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3qp+. aq i q, = ~ 3q,+v Ldtt,:, ---~,-q~-~%+l + 

 q-CT+  t a,=, q, + 
Lemma 1. If the differential constraints are such that the actual displacements belong to the set of 

virtual displacements, then 

i=1 v=l 3 q p + v  0 t  

Proof. The fact that the actual displacements belong to the set of virtual displacements means that 

3~Op+v. 
i= l  i= l  - - - ~ / q i  = IPp+v,  V = [  . . . . .  m 

Corollary 1. If the differential constraints are stationary and allow the actual displacements to belong 
to the set of virtual displacements, then 

P ~ 
E aiq  = o 
i=l 

4. THE MOTION OF A POINT AT A VELOCITY 
OF CONSTANT MAGNITUDE 

Let us imagine a robot which is required to paint a vertical wall using a paint spray. The wall is to be 
painted uniformly, so that the motion of the robot's arm must be such that the spray moves at a velocity 
of constant magnitude. Another practical problem, leading to the requirement that the gripping device 
of a manipulator must move at a velocity of constant magnitude, is encountered when polishing surfaces 
[6]. 

Let us consider the simplest possible mechanical system (see the footnote on page 206) in which a 
point of mass rn (the manipulator's gripping device) can move in a vertical plane and has two degrees 
of mobility. One degree changes the distance p from the point m to a given fixed point O in the same 
plane; the other modifies the angle between the vertical and the segment connecting the points m and 
O. Servodrives ensure motion in each degree of mobility. The mass of the manipulator arm together 
with the servodrives will be ignored. It is required to construct a motion in which, under the action of 
gravity and the servodrives, the magnitude of the velocity of the point is kept fixed. Incidentally, the 
motion of a point at a constant velocity in a central field was considered in [2]. 

We will use the theory proposed above. We form expressions for the kinetic energy and force function 

T = 2 ( P 2  +p2(02), U =mgpcosq0 

where g is the acceleration due to gravity and q0 is the polar angle between the direction of the force 
of gravity and the ray from O to m. The servoconstraint is 

p2 + p2 2 _v02 = ,b(t) 

On the assumption that the servodrives produce an ideal control, the Lagrange equations with multiplier 
Z have the form 

6 = Pq 02 +gcostp+~,p, pZ/I) =-2pf)q0-gpsintp+~,P2q0 

In order to find X, differentiate the equation of the constraint and replace the second derivatives by 

their expressions from the equations of motion. This gives 
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~, = Y - 2g(15 cos q} - pq0 sin q~) 
2Cog + ~)  

Thus, an ideal control may be obtained if we require the servodrive responsible for the linear degree 
of mobility p to produce a force Up = 15~. per unit transferred mass, and the servodrive responsible for 
the rotational degree of mobility (p to produce a torque u~ = pZ~0,k per unit mass. Motion with this control 
will obey the generalized equation of Theorem 2 if we assume that Qi r = 0. Successful investigation of 
the equation depends essentially on the choice of the system of coordinates. 

Let us take Cartesian coordinates 

y=psinq) ,  z=-pcosq)  

The equation of the differential constraint may be represented in the form 

y 2 + i 2 = v  ~ + ~ ,  or z = + ~ J v ~ + ~ - ~ 2  

where a positive value ofk corresponds to upward motion of the manipulator arm and a negative value 
to downward motion. 

Let us consider the case k > 0. Then 

Oz 3~ Z.=tP" =~v02 + * ( / ) - Y  2 , ~y'y = oh'-~ = 

The functions T* and U ° are take the form 

~]Vo + + 6 ( 0 -  y2 

T* 2[v~+~(t)], U* = = - - m g z  

The function T ° depends neither on the velocities nor on the coordinates. 
We have the following expressions for Qy and (2y: 

G = Ov" ~z ~ 
~Z ~y =-mg-~y =mg jO 2o +~(t)_~,2 

O-y=-mzdl'ajU2o ~- 
+ 6 ( 0 -  y2 

Consequently, we obtain a system of equations that does not involve the reactions of the ideal servo- 
constraints 

z-~t z =gy' ~=~/u~ +#P(t)-S¢ 2 (4.1) 
Z 

This system has the obvious solution 

Y = Y0, z = j ~/v 2 +dP(t)dt+zo 
to 

meaning that the gripping device goes through the starting position (Yo, Zo) and moves vertically upward 
at a velocity close to the prescribed velocity. 

Now consider the case k < 0 

= ~0" =-~/~,0 2 + 6 ( t ) -  y2, --=--=Oz oi 
OY ~2;' Cug + ~ ( t ) -  .~2 

The dynamical equation of motion takes the same form (4.1) as obtained for positive k. In the case 
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< 0 we have the obvious solution 

Y -- Yo, 

Yu. E Golubev 

mi .... Z = ~/v~) + #P(t) dt + Zo 
tO 

meaning that the gripping device goes through the starting position (Y0, z0) and moves vertically 
downward at a velocity close to the prescribed velocity. 

Let us find solutions for which~ ~ 0. We introduce the variable 

z' J ~fv°2+t~( t ) -y2/) '  ~ > 0  

equal to the tangent of the angle of inclination of the tangent to the trajectory. Then 

j~2 = I 2 ~2 z' 2 
+ z ~ ( U o  +,b(t)), = 2 (vo 2 +,i,(t)) 

I I + z '  

and there is no finite value of z' for which j~ vanishes. To fix our ideas, let us take ~ > 0. 
The equation for the variable z' is the same whether it takes positive or negative values: 

dz" gdt 

 /l+z "i +6(,) 

We put 

t gdt I q = rl(t) = c exp - j ---) 0 as t ---) 
,o  /vo 

where c = z'(to) + x/1 + [z'(t0)] 2 is a constant. The solution of the differential equation for z" may be 
expressed in the form 

z ' + ~ + z  "2 =~q, z' = -(! - r12)/(2rl) 

Consequently, z' ----> -~, as t --> +oo. It can be shown that 

c > 1, if z'(tcl) > 0 

c = 1, if z'(t o) = 0 

0<  c<  1, if z'(to)<O 

Thus, if, say, z'(to) > 0, then the gripping device of the manipulator will first move upward, reaching 
a maximum point, and then turn downward at a velocity of constant magnitude. Ifz'(t0) < 0, the trajectory 
of the grip will not include an upward section. The portrait of the motion for the case p < 0 is similar. 

Suppose, as before, thatp > 0 (the investigation of the case~ < 0 is analogous). Consider the function 
y(t) when ~ > 0. It may be constructed by integrating the equation 

2q _jo2 = ~ ~ 0 + ti)(t) 

We see that since 11 > 0, the right-hand side of this equation is positive. Let us estimate it. Obviously 

~< 2rl~/v 2 + ~(t)~< 2rib/v02 + I (~(t)I ~< a exp(-×[ t - to] )  

= g a= 2c~/U2o+l#P(to)l, × 
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Integrating, we obtain 

Y-  Y0 ~< a {  I - exp(-x[t -to])} < a 
x 

Consequently, the variable y tends to some limit value ~, determined by the initial data. At the same 
time, by the rule for the choice of signs, we have 

2 1-13 ]u 2 
= l~'v o+&(O 

and for sufficiently large t the vertical velocity is negative and of magnitude close to o0. At the same 
time, the trajectory of the motion approaches the vertical asymptote y = y. 

Let us assume now that the degree of mobility with respect to the coordinate tp is free, only the degree 
of mobility in the coordinate p being governed by a servodrive. Then, obviously, an ideal servoconstraint 
cannot be realized; but this does not mean that no control can be chosen that realizes the servoconstraint 
(though the latter need not be ideal). In order to solve the problem, we have to assume that the constraint 
reaction has the form 

R = g v + R  ~, R ¢ . v = 0  

The second equality means that the vector R ~ is orthogonal to the normal space of the system. As before, 
the multiplier ~. is determined from the condition that the constraint holds, and the vector R x is 
determined from the condition that the reaction R is collinear with the radius vector r: 

g~.+T fU 2 ) g~.+T 
~.=mu2+~ p, R ~ = k \ v . r r - V ,  R=m v . r  

The force R produced by the slave mechanism of the servodrive will be able to guarantee constant 
velocity if the quantity (v" r) is not too small. Note that this was not the ease for an ideal servocontrol. 

Consider steady motion, when ~(t) = T = 0. In Cartesian coordinatesy = p sin (p, z = - p  cos cp, the 
equations of motion become 

. , : ,1- '  
j , , 

This system of equations may also be written in the form 

y_z+g 2_~[d(p2)] -I 

As might have been expected, it admits of motion along the vertical straight line y ~ 0 at k = __. o0. 
Let us find a solution for which the trajectory is a circle of radius R 

z+ = y 2 = R 2 ~  = ~ ~z=~ dt =--~'fz 

Then the system of equations of motion takes the form 

y+to2y = 0, ~+to2z=-g 

We will write down the desired solution 

y=acoso)t+bsincot, z=bcosct)t-asintot- b ,  a2 +b2 =R 2 

The velocity vector has components 
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~= -atosintot + btocostot, ~ = -btos intot -atocostot  

so that the motion will take place at a constant velocity o0 = coR. 
At a fixed velocity aJ0, the circular trajectories form a family depending on the radius R. Each circle 

has its centre at the point with coordinates 

Yc = 0, zc = - g  R21 u~ 

and intersects the Oz axis at two points: the upper point with ordinate zM and the lower point with ordinate 
Zm: 

ZM = R -  gR2 gR 2 

z . :  R+Vg-o ) 
The function zM(R) has a maximum ~M when R -- V2o/(2g) 

u 2 

= max z.(R) = o 

4g 

As R increases from zero to o~/(2g), each successive circle contains any preceding circle inside it. As 
R increases from o~/(2g) to infinity, the circles intersect, and the coordinate Zm decreases 
monotonically. The projection of the phase domain of the solutions we have constructed on to the 
coordinate space is the union of the upper half-disk, with radius r = v~/(2g) and centre at the point 
(0, - o~/(4g), and the domain defined by the relations. 

gR2 R<~y<~R for R>~ v2 
Z =  2 "  

u o 2g 

This family of solutions obtained shows that the way in which the mode of realization of a 
servoconstraint has a crucial effect on the nature of the motion. Thus, a point moving at constant velocity 
in a gravity field may describe a circle if the constraint is realized by a purely radial force; but it cannot 
have circular trajectories when the servodrives develop an ideal control. 

5. CONCLUSION 

The main results of this paper are as follows. 
1. The concept of virtual displacements for systems of point masses obeying servoconstraints has been 

generalized. 
2. An analytical representation of the reactions of the servoconstraints, depending on the structure 

of the virtual displacements, has been given. 
3. A concept of quasi-coordinates for non-linear differential servoconstraints has been developed, 

and the Voronets equations have been extended to the case of differential servoconstraints non-linear 
in the velocities. 

4. 1~,¢o problems on the motion of a heavy point with the magnitude of the velocity kept constant 
have been solved. One problem was solved on the assumption that the differential constraint was realized 
by an ideal servocontrol and the other on the assumption that the servocontrol was realized only in the 
radial direction. It has been shown that the trajectory of the point depends essentially on the selected 
mode of servocontrol. 
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